Abstract

The influence of low-frequency sonolysis on the kinetics bimolecular liquid-phase reactions was studied with due regard for the association (dimers and trimers) of starting reagents. The mathematical modeling of chemical reactions that were described by nonlinear differential equations is performed. The steady states, the singular points characteristics, the nature of concentration oscillations in the reaction system are described. With increasing frequency and amplitude of low-frequency sonic waves (up to some critical value), we observed the cessation of the reaction. This observation offers an additional tool for controlling reaction rate by the external action of low-frequency vibrations. The conclusions of the work are obtained under certain assumptions. The exact determination of the critical conditions for changes in dynamics is beyond the scope of the problem.

Highlights

  • When studying the kinetics of liquid-phase reactions, the dependence of the rate constants on the concentration of the reagent, the extreme nature of the Arrhenius dependence of the rate constant on temperature were found [1] [2]

  • The influence of low-frequency sonolysis on the kinetics bimolecular liquid-phase reactions was studied with due regard for the association of starting reagents

  • The associative structure of a liquid reaction system opens up new possibilities for controlling the kinetics of reactions by various kinds of external influences

Read more

Summary

Introduction

When studying the kinetics of liquid-phase reactions, the dependence of the rate constants on the concentration of the reagent, the extreme nature of the Arrhenius dependence of the rate constant on temperature were found [1] [2]. These kinetic anomalies are not described by the kinetics of a homogeneous medium. Data on the effect of the association of reagents on the kinetics of reactions are still ignored in the literature, and the theory of phenomena induced by periodic mechanical action, taking into account the supramolecular structure of the reaction medium, is being developed relatively recently. The review aims at discussing possible approaches to regulate the kinetics of chemical reactions under the action low-frequency external action

Mathematical Model
Results and Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.