Abstract

AbstractOrganic‐lean and organic‐rich size‐selected soot particles were exposed to a varying O3 concentration, progressively decreasing the soot‐water contact angle (θ) to study its impact on ice nucleation (IN). The IN ability of fresh and O3‐aged soot between 218 and 233 K was observed while monitoring the particle mass and size distributions. The properties of fresh and O3‐aged bulk organic‐lean soot samples with a low and high O3‐adsorption were characterized for soot‐water θ, chemical composition, functional groups, soot‐water interaction ability and porosity. By retaining the soot porosity between aged and unaged samples, we demonstrate that a decrease in θ after O3‐aging enhances organic‐lean soot IN via pore condensation and freezing. Fresh organic‐rich soot exhibits suppressed homogeneous freezing, but after O3‐aging it freezes within uncertainty of the homogeneous freezing threshold of solution drops, because of increased hydrophilicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call