Abstract

Background. In recent decades, new results on the influence of powerful meteorological processes on the ionosphere have been obtained. At the same time, the possibility of tropospheric-ionospheric interaction outside the disturbed periods remains unclear, which is important for assessing the energy of the phenomenon and for modeling the dynamic processes of the lower and upper atmosphere as a single self-organizing system. In this work, for the first time, the possibility of the influence of the lower atmosphere on the median values of ionospheric parameters against the background of processes caused by space weather is considered. Objectives of the work is to search and analyze long-term longitudinal effects of the mid-latitude ionosphere in the winter season and their possible connection with processes in the lower atmosphere. Materials and methods. The studies were carried out using daily data for the winter seasons of 2012 – 2018 at a latitude of 40 °N on the basis of maps of ionospheric total electron content obtained using the global network of navigation satellites and global maps of pressure and temperature of the surface atmosphere. Data on space weather and the magnetosphere (indices of solar and geomagnetic activity) were also used. Statistical analysis methods were used. Results. Significant (up to 40 % of the average level) permanently existing longitudinal extrema of the ionospheric total electron content have been established, which correlate with changes in the pressure and temperature of the surface atmosphere. The relationship is characterized by significant correlation coefficients from +0.34 to +0.48 in the seasons under consideration. The total electron content maxima fall on longitudes with maximum surface atmospheric pressure gradients. The influence of space weather through the mismatch between the geographic and geomagnetic coordinate systems also leads to longitudinal effects in the ionosphere, but without the formation of local extrema. Conclusions. The results obtained indicate the possibility of long-term or continuous interaction of the lower atmosphere with the higher layers of the atmosphere and the ionosphere. Taking into account the constant nature of the longitudinal features of the total electron content, an assumption was made about the important role of stationary planetary waves in the implementation of atmospheric-ionospheric interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call