Abstract

Due to presence of more oxygen, absence of carbon-carbon (C-C) bond in chemical structure, and high cetane number of dimethyl ether (DME), pollution from DME operated engine is less compared to diesel engine. Hence, the DME can be a promising alternative fuel for diesel engine. The present study emphasizes the effect of various exhaust gas recirculation (EGR) rates (0-20%) and DME/Diesel blends (0-20%) on combustion characteristics and exhaust emissions of common rail direct injection (CRDI) engine using three-dimensional computational fluid dynamics (CFD) simulation. Extended coherent flame model-3 zone (ECFM-3Z) is implemented to carry out combustion analysis, and k-ξ-f model is employed for turbulence modeling. Results show that in-cylinder pressure marginally decreases with employing EGR compared to without EGR case. As EGR rate increases, nitrogen oxide (NO) formation decreases, whereas soot increases marginally. Due to better combustion characteristics of DME, indicated thermal efficiency (ITE) increases with the increases in DME/diesel blend ratio. Adverse effect of EGR on efficiency for blends is less compared to neat diesel, because the anoxygenated region created due to EGR is compensated by extra oxygen present in DME. The trade-off among NO, soot, carbon monoxide (CO) formation, and efficiency is studied by normalizing the parameters. Optimum operating condition is found at 10% EGR rate and 20% DME/diesel blend. The maximum indicated thermal efficiency was observed for DME/diesel ratio of 20% in the present range of study. Obtained results are validated with published experimental data and found good agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.