Abstract

The fundamental cause of diabetic limbs' problem is insufficient blood supply. The aim of the current work was to experimentally and numerically investigate the blood flow velocity and pressure changes in the channel during vibrational excitation. The micro-scale Particle Image Velocimetry (μPIV) technique as well as corresponding numerical channel model in COMSOL Multiphysics software were used to investigate the influence of external vibrations. Momentum upstream flow were noted on the fluid that was influenced by vibrations. Furthermore, momentum flow velocity increased by more than 3 times in both experimentally and theoretically. These results show that suggested novel low-frequency vibrational excitation method should be investigated in clinical studies in case of improvement of blood circulation in human limbs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call