Abstract
Fatigue design of a steel catenary riser (SCR) at the touchdown point (TDP) is a challenging problem. Many previous studies on this topic considered only the effect of wave-frequency (WF) vessel motions; the low-frequency (LF) motions are often neglected due to excessive computational costs. The LF vessel motion shifts the TDP, thus spreading the damage along the riser, but it can also increase the fatigue damage due to the bimodal stress response. Moreover, it may affect the trench depth and profile, and influence the WF dynamics. This paper investigates the above phenomenon to provide a better understanding. To avoid the high cost associated with simulating the combined WF and LF responses, this paper proposes a simple and efficient strategy for incorporating the LF motions. The approach is found to be satisfactory in accuracy, based on case studies that consider linear/non-linear soil models, as well as flat seabed and trench profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.