Abstract

The influence of Lorentz- and CPT-violating terms (in "vector" and "axial vector" couplings) on the Dirac equation is explicitly analyzed: plane-wave solutions, dispersion relations and eigenenergies are explicitly obtained. The nonrelativistic limit is worked out and the Lorentz-violating Hamiltonian identified in both cases, in full agreement with the results already established in the literature. Finally, the physical implications of this Hamiltonian on the spectrum of hydrogen are evaluated both in the absence and presence of a magnetic external field. It is observed that the fixed background, when considered in a vector coupling, yields no qualitative modification in the hydrogen spectrum, whereas it does provide an effective Zeeman-like splitting of the spectral lines whenever coupled in the axial vector form. It is also argued that the presence of an external fixed field does not imply new modifications on the spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.