Abstract
We examine connection matrices of Ising systems with long-rang interaction on d-dimensional hypercube lattices of linear dimensions L. We express the eigenvectors of these matrices as the Kronecker products of the eigenvectors for the one-dimensional Ising system. The eigenvalues of the connection matrices are polynomials of the dth degree of the eigenvalues for the one-dimensional system. We show that including of the long-range interaction does not remove the degeneracy of the eigenvalues of the connection matrix. We analyze the eigenvalue spectral density in the limit L → ∞. In the case of the continuous spectrum, for d ⩽ 2 we obtain analytical formulas that describe the influence of the long-range interaction on the spectral density and the crucial changes of the spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.