Abstract

A theoretical study is performed on the relation between magnetic properties and lattice structures, that is, lattice constants and local atom displacement, for rhombhedral (rh-) ${\mathrm{Y}}_{2}{\mathrm{Fe}}_{17}$ compounds. We use real-space full-orbital tight-binding formalism to calculate electronic states. Magnetic anisotropy (MA) is calculated with high numerical accuracy by adopting a second-order perturbation for spin-orbit interaction. It is shown that the local magnetic moments of Fe atoms on 9d and 18h sites increase with increasing lattice volume. The result is attributed to the high atomic area density of these sites on the hexagonal planes. Those of Fe atoms on the other sites are found to be nearly independent of the volume. We calculate local MA energy of Fe atoms on each nonequivalent site and find that the magnitude of the local MA is strongly affected by the local atom displacement. As a result, the MA of ${\mathrm{Y}}_{2}{\mathrm{Fe}}_{17}$ is shown to be sensitive to volume.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.