Abstract

This study focuses on particulate matter emissions from tire–road contact and their investigation using an internal drum test bench. The test bench is equipped with real-road surfaces and has been upgraded to enable real-time measurements of particulate matter. It was found that the road surface changes during the tests due to constant rolling over, influencing the level of emissions significantly. To account for this effect, the micro roughness was characterized before, during, and after the tests. Specific emission values consisting of particle mass and number were determined with summer, all-season, and winter tires for different road conditions, as well as specific longitudinal and lateral forces. It turned out that emissions increase disproportionately with load for both force directions. The winter tire led to the highest emissions across all loads, and the summer tire led to the lowest ones. While lateral forces caused emissions many times higher than longitudinal forces for the summer tire, forces in both directions led to comparable emissions for the all-season and winter tires. Regarding the ambient temperature, a lower one seems to be favorable for summer tires and a higher one seems to be favorable for winter tires. Lastly, particle size distributions during different load conditions show a dependence on load, such that larger particles are emitted with increasing load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call