Abstract

Abstract To investigate the dynamic response and attenuation law of rock slope sites subjected to blasting, three lithological numerical models, including slate (hard rock), tuff (relatively soft rock), and shale (soft rock), are established by using MatDEM. By analyzing the wave field, velocity, and acceleration response of the models and their Fourier spectrum, combined with stress and energy analysis, their dynamic response characteristics are investigated. The results show that blasting waves propagate from near field to far field in a circular arc, and the attenuation effect of waves in soft rock is less than that in hard rock. The influence of lithology on the dynamic response of the ground surface and bedrock is different. Blasting waves mainly affect the dynamic response in the near-field area of the blasting source. In addition, the dynamic amplification effect of slopes is as follows: hard rock > relatively soft rock > soft rock. The slope surface has an elevation attenuation effect. A dynamic amplification effect appears in the slope interior within the relative elevation (0.75, 1.0). The Fourier spectrum has an obvious predominant frequency, and that of the slope crest and interior is less than that of the slope surface. Moreover, the total energy generated by the rocky sites gradually changes into kinetic energy, gravitational potential energy, elastic potential energy, and heat. Energy-based analysis shows that the attenuation effect of blasting waves in hard rock is larger than that in soft rock overall. This work can provide a reference for revealing the blasting vibration effect of rock sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call