Abstract
AbstractThe addition of cations to TiO2 photoelectrodes is routinely accepted as a route to enhance the performance of conventional n‐i‐p solar cells. However, this is typically achieved in multiple steps or by the incorporation of expensive and hydroscopic cationic precursors such as lithium bis(trifluoromethanesulfonyl)imide. In addition, it is often unclear as to whether the incorporation of such cation sources is inducing “doping” or simply transformed into cationic oxides on the surface of the photoelectrodes. In this study, TiO2 nanofibers were produced through a simple electrospinning technique and modified by introducing lithium and lanthanum precursors in one step. Our results show that the addition of both cations caused minimal substitutional or interstitial doping of TiO2. Brunauer‐Emmett‐Teller measurements showed that lanthanum‐treated TiO2 nanofibers had an increase in surface area, which even exceeded that of TiO2 P25 nanoparticles. Finally, treated and untreated TiO2 nanofibers were used in n‐i‐p solar cells. Photovoltaic characteristics revealed that lanthanum treatment was beneficial, whereas lithium treatment was found to be detrimental to the device performance for both dye‐sensitized and perovskite solar cells. The results discuss new fundamental understandings for two of the commonly incorporated cationic dopants in TiO2 photoelectrodes, lithium and lanthanum, and present a significant step forward in advancing the field of materials chemistry for photovoltaics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.