Abstract

An ionic liquid (IL) 1-allyl-3-(2-methoxyethyl)imidazolium bis(trifluoromethylsulfonyl)imide ([AMO][TFSI]) is prepared, and the effect of the addition of LiTFSI into [AMO][TFSI] on the transport and physicochemical properties is studied herein. The diffusion coefficients of 1H, 7Li, and 19F are determined using pulsed-gradient spin–echo NMR to study the dynamics of all ion species. The neat [AMO][TFSI] and LiTFSI-doped [AMO][TFSI] give approximately straight lines for the relationship of D vs Tη–1, demonstrating that the Stokes–Einstein equation holds for the ionic diffusivity in the binary system. NMR T1 relation time measurements show the 1H-T1 and 19F-T1 of LiTFSI-doped [AMO][TFSI] decrease with the increase of Li salt concentration, which is due to the viscosity increases and the formation of stable coordination adducts of Li and TFSI when the salt concentration increases. From the study of chemical shift in one-dimensional NMR spectroscopy, an upfield shift in 1H and 19F spectra is observed in ILs wi...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call