Abstract

The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p < 0.001) from 76.8 ± 1.8% to 85.7 ± 1.2%. Analysis of covariance method followed by Tukey post-hoc test of 92 tests did not show a significant change in removal efficiency between liquid flow rates of 1.5, 2.5 and 3.5 L/min (p = 0.811). On the other hand, with fixed pressure loss across the tower, by increasing the liquid/gas (L/G) mass ratio, the average removal efficiency decreased significantly (p = 0.001) from 89.9% at L/G of <2 to 83.1% at L/G of 2–3 and further to 80.2% at L/G of >3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream.

Highlights

  • A large number of epidemiologic studies have shown that elevated levels of several air pollutants, including acid aerosols and sulfates are correlated with an increased prevalence of pulmonary disease

  • In order to remove the effect of pressure loss on the efficiency, analysis of covariance (ANCOVA) method was employed followed by Tukey post-hoc test

  • Wet scrubber designs call for 90–95% removal efficiency for SO2 [14]

Read more

Summary

Introduction

A large number of epidemiologic studies have shown that elevated levels of several air pollutants, including acid aerosols and sulfates are correlated with an increased prevalence of pulmonary disease. Strong inorganic acid mists containing sulfuric acid (H2SO4) have been reported to correlate with lung and laryngeal cancer in humans [1,2,3] and is recognized as a human carcinogen by US National Toxicology Program [4]). Sulfuric acid is a strong acid widely used in different applications. In the atmosphere and inventing stacks, it is formed from sulfur dioxide, sulfur trioxide and oleum (a combination of sulfur trioxide and sulfuric acid used in industry) [6].

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.