Abstract

Epoxy resins are mostly produced from petroleum-based bisphenol A and epicholorhydrin. Bisphenol A is synthesized from non-renewable petroleum-based phenol and acetone. Biomass derived epoxy-based polymers (EBPs) are becoming the most promising alternative for petroleum-based counterparts, but still these biomass-based EBPs have inferior properties. In the present work, two types of epoxy resins were prepared with different weight percentages of resin (bisphenol A) and hardener. They were then modified with different weight percentages of liquefied wood from spruce sawdust. The derived EBPs were analysed in terms of tensile strength and tensile modulus, fractured surface morphology, thermal stability, long-term water adsorption and resistance to brown-rot fungus decay. The results revealed that the percentages of hardener and liquefied wood significantly influenced the overall properties of the EBPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.