Abstract

We investigate electrical characteristics of single-electron electrode/nanoisland/electrode devices formed by alkanedithiol assisted self-assembly. Contrary to predictions of the orthodox model for double tunnel junction devices, we find a significant ( approximately fivefold) discrepancy in single-electron charging energies determined by Coulomb blockade (CB) voltage thresholds in current-voltage measurements versus those determined by an Arrhenius analysis of conductance in the CB region. The energies do, however, scale with particle sizes, consistent with single-electron charging phenomena. We propose that the discrepancy is caused by a multibarrier junction potential that leads to a voltage divider effect. Temperature and voltage dependent conductance measurements performed outside the blockade region are consistent with this picture. We simulated our data using a suitably modified orthodox model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call