Abstract

This study investigated the tolerance, defensive response and methanogenic pathways of anaerobic granular slugde and anaerobic suspended sludge (AGS and ASS) exposed to different LCM concentrations. AGS presented a higher tolerance to LCM stress, accompanied with 20.8 ± 2.6% enhancement in methane production at 1000 mg/L LCM, which was likely attributed to the less cell deaths and extracellular polymeric substances (EPSs) protection. In the acidification stage, acetate accumulation was stimulated and the activity of acetate kinase was promoted by LCM. In the methanogenesis stage, propionate and butyrate utilization for methane production were impaired after LCM addition. LCM also improved the activity of pyruvate-ferredoxin oxidoreductase and strengthened the process of hydrogenotrophic methanogenesis, likely by accelerating interspecies electron transfer mediated by hydrogen. ErmB and ermF were the dominate LCM resistance genes in AGS under LCM pressure conferring the resistance mechanism of ribosomal protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.