Abstract

The influence of soil pH changes by liming on denitrification and denitrifier gene abundance under different biogeochemical conditions by amending two contrasting soils with water, cattle urine (600 mg N kg−1 soil) and urine + dicyandiamide (DCD) (10 mg kg−1 soil) and incubating at 10 °C and 15 °C was evaluated. Liming increased N2O emission, denitrification rate and denitrifier gene abundance in both soils. The increase in N2O and denitrification with liming was higher in fluvial soil (24% increase in N2O and 22% increase in denitrification) than in allophanic soil (16% in N2O and 19% increase in denitrification). There was more N2O coming from urine applied to limed soil than that from urine to un-limed soil. Addition of DCD with urine reduced both N2O emission and denitrification; the reduction was greater in limed soil than in un-limed soil. Results of quantitative polymerase chain reaction (qPCR) of bacterial denitrifier genes (nirS, nirK and nosZ genes) indicate that liming-induced soil pH changes increased denitrifier gene abundance and caused more complete bacterial denitrification in urine-amended soils. These results suggest that liming grazed pasture soils induces complete denitrification, which may mitigate N2O emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call