Abstract

We report on the effect of light-ion irradiation on the size distribution of etched tracks produced by medium energy heavy-ions in polycarbonate. Makrofol KG polycarbonate foils were treated with 2 MeV H+ ions at different fluences φ either before or after a short irradiation with 18 MeV Au7+. The heavy ion irradiation was used to produce the latent tracks in the foils and the proton beam acted as a perturbation to the matrix. The proton irradiation causes initially a decrease in the mean etched pore size, as compared to samples only bombarded by Au ions, reaching a minimum at H+ fluences around 2–5×1013 cm−2, while at higher φ the pore size starts to grow again. This effect is attributed to the action of two competitive processes that dominate in different fluence regimes. The decrease in the pore radii at low fluences is attributed to an increase in crystallinity induced by the proton beam. As the total dose builds up, this effect is surpassed by chain scission and amorphization that grow at a lower rate and cause the pore radii to increase again.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call