Abstract

This in vitro study assessed peak temperature and temperature increase (ΔT) within the pulp chamber during different extended photoactivation techniques (EPT-applying similar radiant exposure values) to resin-based composites (RBCs) placed in a Class I cavity preparation in an extracted human lower third molar. A T-type thermocouple was placed in the pulp chamber and connected to a temperature analysis device (Thermes, Physitemp). The tooth was attached to an assembly simulating the in vivo environment (controlled baseline pulp chamber temperature and fluid flow). The real-time pulp chamber temperature was evaluated throughout the photoactivation (Bluephase N, Ivoclar Vivadent) of two bulk-fill RBCs: Tetric N Ceram Bulk Fill (TBF; shade: IVA; Ivoclar Vivadent); Surefill SDR flow + (SDR, shade: Universal; Dentsply Sirona), which were exposed to different curing techniques: 40s-occlusal surface; 20s-occlusal + 10s-buccal + 10s-lingual surfaces; 10s-buccal + 10s + lingual + 20s-occlusal surfaces. Each EPT delivered 42.4J/cm2. Vickers hardness (VHN) was measured on the removed, sectioned RBC restorations at the top and bottom middle areas after curing. ΔT and VHN data were analyzed using 2-way ANOVA followed by Bonferroni post-hoc test (α = 0.05). Peak temperature data were analyzed using one-way ANOVA and Dunnett's post-hoc test (α = 0.05). SDR showed higher ΔT values than TBF (p = 0.008) in some EPTs. Neither technique resulted in ΔT values greater than 5.5 °C. Both composites had acceptable bottom/top hardness ratios (greater than 80%), regardless of the photoactivation technique. The evaluated EPTs may be considered safe as a low-temperature increase was noticed within the pulp chamber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call