Abstract

BackgroundThe role of body composition (lean mass and fat mass) on urine chemistries and bone quality is still debated. Our aim was therefore to determine the effect of lean mass and fat mass on urine composition and bone mineral density (BMD) in a cohort of healthy females.Materials and methods78 female volunteers (mean age 46 ± 6 years) were enrolled at the Stone Clinic of Parma University Hospital and subdued to 24-hour urine collection for lithogenic risk profile, DEXA, and 3-day dietary diary. We defined two mathematical indexes derived from body composition measurement (index of lean mass-ILM, and index of fat mass-IFM) and the cohort was split using the median value of each index, obtaining groups differing only for lean or fat mass. We then analyzed differences in urine composition, dietary intakes and BMD.ResultsThe women with high values of ILM had significantly higher excretion of creatinine (991 ± 194 vs 1138 ± 191 mg/day, p = 0.001), potassium (47 ± 13 vs 60 ± 18 mEq/day, p < 0.001), phosphorus (520 ± 174 vs 665 ± 186 mg/day, p < 0.001), magnesium (66 ± 20 vs 85 ± 26 mg/day, p < 0.001), citrate (620 ± 178 vs 807 ± 323 mg/day, p = 0.002) and oxalate (21 ± 7 vs 27 ± 11 mg/day, p = 0.015) and a significantly better BMD values in limbs than other women with low values of ILM. The women with high values of IFM had similar urine composition to other women with low values of IFM, but significantly better BMD in axial sites. No differences in dietary habits were found in both analyses.ConclusionsLean mass seems to significantly influence urine composition both in terms of lithogenesis promoters and inhibitors, while fat mass does not. Lean mass influences bone quality only in limb skeleton, while fat mass influences bone quality only in axial sites.

Highlights

  • The role of body weight, body mass index and body composition in the evaluation of lithogenic risk is still controversial

  • Index of lean mass (ILM) is independent from the weight and from Body mass index (BMI)

  • The second index Index of fat mass (IFM) correlates highly significant with total fat mass, r = 0.689 and p < 0.0001 and it is not correlated with total lean mass

Read more

Summary

Introduction

The role of body weight, body mass index and body composition in the evaluation of lithogenic risk is still controversial. Even if many studies show an increase in the risk of developing nephrolithiasis with higher levels of BMI, the exact contribution of lean mass and fat mass in determining this risk is still unclear. If we consider urinary factors of lithogenic risk, an inverse correlation between pH and BMI and between pH and fat mass has been reported [7]. The role of body composition (lean mass and fat mass) on urine chemistries and bone quality is still debated. Our aim was to determine the effect of lean mass and fat mass on urine composition and bone mineral density (BMD) in a cohort of healthy females

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.