Abstract
The impact of forest tree leaf litters on microbial activity and nutrient status of red laterite soil was tested for the ecological suitability of Cassia siamea, Shorea robusta, Acacia auriculiformes and Dalbergia sissoo, which are typically used for afforestation of wastelands in eastern India. The objectives were to compare seasonal variation in soil enzyme activity in 30-years old afforested sites, and to study nutrient status and microbial biomass and function during short-term in-situ incubation of litter in decomposition pits. In afforested soils, enzyme activities significantly varied between litters and seasons. All enzyme activity except invertase dominated in the soils containing Dalbergia and Cassia litters compared to the others. The seasonal effect was enzyme-dependent, with amylase and cellulase reaching peaks during the rainy season but invertase activity showed a reverse trend with lowest values in rainy season, except in Acacia soil, and protease activity was lowest in the soil containing Cassia and Dalbergia during the rainy season. Dehydrogenase activity was negligible in the soils containing Shorea and Acacia, but remained high with respect to Dalbergia and Cassia during all seasons. The decomposition pit study showed significant increase of soil nutrients with respect to litter types and intervals, except with respect to electrical conductivity. Cassia and Dalbergia litters enabled notable increase of soil nutrients than Shorea and Acacia. The soil enzyme activity, in general, increased with duration of litter decay, but microbial biomass C (MBC) decreased over time except in Shorea. Therefore, the enzyme rates normalized to the MBC indicated inverse relations for all enzymes, except in the soil containing Shorea. A positive relationship existed between MBC and soil respiration in Cassia, Acacia and Dalbergia. Analysis of variance revealed main effects of litter types for increasing protease, MBC and CO2 output, and a main effect of intervals for enhancing enzymes other than cellulase. Rates of soil respiration were greater in soils contain Cassia and Dalbergia, and showed significant differences between litters and between intervals. All enzymes were significantly correlated with electrical conductivity, organic carbon and available phosphorus contents, and all enzymes except invertase were correlated with nitrate concentrations. The acidic soil pH did not affect enzyme activities, and soil nutrients exerted only weak effect on MBC and respiration. Our study showed that leaf litters of Cassia and Dalbergia trees improved the nutrient status and microbial activity in soil more so than Shorea and Acacia litters, and therefore, afforestation using Cassia and Dalbergia trees may be particularly suitable for soil restoration in tropical laterite wastelands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.