Abstract

This study investigated the influence of leachate prepared from Telfairia occidentalis on the geotechnical and geochemical properties of termite mound soil obtained from the premises of the federal university of agriculture, Abeokuta, south-western Nigeria. The termite mound soil samples were collected from three different locations and each sample collected was contaminated by mixing with leachates in percentage increments of 0% 10%, 15% and 20% of dry weight of the air-dried soil. The soil samples were subjected to Atterberg limits and hydraulic conductivity tests for geotechnical observation and X-ray fluorescence tests for geochemical tests. The range of values for the geotechnical analyses were obtained as; plastic limit (9.1% – 14.2%), liquid limit (28.6 % – 61%), plasticity index ((18.2% – 49.5%) and hydraulic conductivity (1.85 – 4.1 x 10-8) cm/sec) with a resultant reduction in the plastic limit, liquid limit and plasticity index values but an increase in the hydraulic conductivity of the samples as the leachate concentration increased. The results from X-ray fluorescence analyses after 20% leachate contamination showed that the major elemental chemical composition for the three samples were comprised of SiO2 (56.25 – 56.5%), Al2O3 (28.42 – 28.50%), Fe2O3 (4.46 – 6.5%), TiO2 (1.08 – 1.23%), CaO (1.45 – 1.60%), P2O5 (0 – 0.04%), K2O (0.9 – 6.1%) and MnO (0.02 – 4.7%). There was a marginal alteration of the indices with the values inferring the presence of a minimum composition of feldspar and a major composition of quartz-rich minerals and thus lending more credence to the presence of silicates as shown from the X-ray fluorescence results. It also infers that the termite mounds are predominantly made from sand materials. The termite soil samples obtained from the aforementioned locations may not be suitable for engineering works unless stabilization procedure is adopted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.