Abstract

We report the phase structures of a series of poly(styrene-block-{3′-[4-(4-n-dodecyloxybenzoyloxy)benzoyloxy]-4-(12-methacryloyloxydodecyloxy)benzoyloxybiphenyl}) (PS-b-PMAC) side-chain liquid crystalline block copolymers (SC LCBCP). The SC liquid crystalline polymer was formed by side attaching a bent-core mesogen to the polymer backbone using a 12-carbon spacer. The phase structure of the high and low fPMAC samples were investigated using differential scanning calorimetry, small-angle and wide-angle X-ray scattering, and transmission electron microscopy techniques. The PS coil block and PMAC LC block phase separate into a lamellar morphology in all of the samples investigated (volume fraction of PMAC fPMAC ∼ 0.31−0.65). However, both the LC phase and the orientation of the hierarchical structure under mechanical shear showed strong dependence on the LC content. Samples having a high fPMAC (0.5−0.65) showed a SmC2 LC phase (Smectic C denotes the LC molecules are tilted with respect to the layer normal, and 2 represents a bilayered structure), similar to that observed in PMAC homopolymers. Upon mechanical shear, these smectic layers oriented parallel to the shear plane and the BCP lamellae oriented perpendicular to the shear plane with the layer normal parallel to the vorticity direction. In samples having a lower fPMAC, the BCP lamellae laid parallel to the shear plane and the LC phase structure in these samples was columnar rectangular. A detailed structural and morphological study will be reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.