Abstract

Monolayers of transition metal dichalcogenides (TMDs) have been recently demonstrated to be a new family of direct bandgap semiconductors exhibiting extraordinary excitonic effects and high-efficiency luminescence. Here we present a micro-photoluminescence (PL) study on temperature dependent luminescence of excitons from an exfoliated WS2 monolayer. It is found that lattice vibrations (i.e. phonons) have a profound influence on the excitonic luminescence of the WS2 monolayer in several aspects including the spectral peak shift, lineshape broadening, transfer, and even formation entropy of excitons. Our study not only leads to the determination of the fundamental excitonic bandgap: eV at , but also reveals that 120 K is a ‘turning’ temperature for the competition and formation entropy of free excitons and defect-bound excitons in the studied 2D WS2 crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.