Abstract

Li+- and Na+-conducting thiophosphates have attracted much interest because of their intrinsically high ionic conductivities and the possibility to be employed in solid-state batteries. Inspired by the recent finding of the influence of changing lattice vibrations and induced lattice softening on the ionic transport of Li+-conducting electrolytes, here we explore this effect in the Na+ conductor Na3PS4–xSex. Ultrasonic speed of sound measurements are used to monitor a changing lattice stiffness and Debye frequencies. The changes in the lattice dynamics are complemented by X-ray diffraction and electrochemical impedance spectroscopy. With systematic alteration of the polarizability of the anion framework, a softening of the lattice can be observed that leads to a reduction of the activation barrier for migration as well as a decreased Arrhenius prefactor. This work shows that, similar to Li+ transport, the softening of the average vibrational frequencies of the lattice has a tremendous effect on Na+-ionic ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.