Abstract

This paper studies, from a modelling point of view, the influence of randomly distributed lattice defects (non-patterned areas and variable hole size) on the ferromagnetic resonance behaviour and spin wave mode profiles of 2D magnonic crystals based on Ni80Fe20 antidot arrays with hexagonal lattice. A reference sample is first defined via the comparison of experimental and simulated hysteresis loops and magnetoresistive curves of patterned films, prepared by self-assembly of polystyrene nanospheres. Second, a parametric analysis of the dynamic response is performed, investigating how edge, quasi-uniform and localized modes are affected by alterations of the lattice geometry and bias field amplitude. Finally, some results about the possible use of magnetic antidot arrays in frequency-based sensors for magnetic bead detection are presented, highlighting the need for an accurate control of microstructural features.

Highlights

  • Their implications on device applications are still to be understood

  • We investigate from a modelling point of view the influence of randomly distributed lattice defects on the ferromagnetic resonance (FMR) behaviour and spin wave mode profiles of 2D Ni80Fe20 antidot arrays with hexagonal lattice

  • We study the combined effects of local variations in the hole size and non-patterned regions. These effects are illustrated by the FFT power spectra reported in Fig. 5a, where the black curve corresponds to the antidot array without defects; the blue one is associated with the disordered array with 10% of filled holes and dh set at 330 nm; the red one refers to a disordered array with 10% of filled holes and containing holes with randomly distributed diameter, ranging from 280 nm to 380 nm

Read more

Summary

Discussion

A micromagnetic numerical approach has been applied to study hysteresis, magnetotransport and FMR properties of Ni80Fe20 antidot arrays with hexagonal lattice, in the presence of microstructural defects (non-patterned areas and variations in hole diameter). The presence of non-patterned regions lead to a modification of the dynamic response of the system with a softening of the edge and localized modes in the FFT power spectra. This is accompanied by a possible amplification of the extended modes at quasi-saturation fields and to a local alteration of spin wave mode profiles. Local variations in the hole diameter can lead to a shift in the resonance frequencies of edge and quasi-uniform modes, impacting on the possible use of antidot arrays in frequency-based sensors for magnetic nanoparticle detection. To avoid alterations of the expected FFT power spectra, more frequent for self-assembling samples, fabrication processes based on EBL techniques can be adopted, enabling to obtain well-defined lattice features, but at the cost of low speed and small covering area

Methods
Author Contributions
Findings
Additional Information

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.