Abstract

We investigated the a- and c-axis lattice constants of GaN buffer and 180-nm-thick p-InGaN layers grown on SiC and sapphire substrates using reciprocal space mapping of the X-ray diffraction intensity. It was found that the a-axis lattice constant of the GaN buffer layer on a SiC substrate is larger than those of unstrained GaN and a GaN buffer layer on a sapphire substrate. As a result, the p-InGaN layer on GaN/SiC is fully strained even at the In mole fraction of 9.0% where that on GaN/sapphire is relaxed. This result means that fewer defects are generated in p-InGaN on GaN/SiC at higher In mole fractions. This is another advantage of SiC substrate for npn-type GaN/InGaN heterojunction bipolar transistors, in addition to its high thermal conductivity. The collector current density dependence of current gain shows the ideality factor of 2 for GaN/InGaN HBTs on both SiC and sapphire substrates. This is ascribed to the recombination current at the emitter-base interface, which arises from the threading dislocations generated at the interface between the substrate and nitride buffer layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call