Abstract
The quantum-confined Stark effect of excitonic states in self-assembled (In,Ga)As∕GaAs quantum dots was studied by microphotoluminescence spectroscopy. A similar Stark-shift behavior for excitons, biexcitons, and a charged state was observed. Investigations suggest the absence of a permanent dipole moment in the lateral quantum dot plane. Values of the polarizability could be derived for all the investigated states. Furthermore, high-resolution Fabry-Pérot interferometry was applied to resolve the excitonic fine structure splitting and to investigate the influence of a lateral electric field. For a single dot, the splitting could be tuned to zero, thus affording the possibility to create electrically controlled entangled photon pairs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.