Abstract

The quantum-confined Stark effect of excitonic states in self-assembled (In,Ga)As∕GaAs quantum dots was studied by microphotoluminescence spectroscopy. A similar Stark-shift behavior for excitons, biexcitons, and a charged state was observed. Investigations suggest the absence of a permanent dipole moment in the lateral quantum dot plane. Values of the polarizability could be derived for all the investigated states. Furthermore, high-resolution Fabry-Pérot interferometry was applied to resolve the excitonic fine structure splitting and to investigate the influence of a lateral electric field. For a single dot, the splitting could be tuned to zero, thus affording the possibility to create electrically controlled entangled photon pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call