Abstract

We propose a process of deposition of plasmonic nanocomposites comprising magnetron sputtering of AlN:Ag multilayers combined with intermediate steps of flash annealing. When the AlN matrix structure was amorphous, thermal annealing induced the break-up of silver layers and the formation of homogeneously distributed spherical nanoparticles. On the other hand, in the case of a nanocrystalline AlN matrix, the larger nanoparticles were observed to form only at an interfacial and a surface zone. Further treatment by laser annealing was employed in order to photo-modulate the localized surface plasmon resonances (LSPRs) by promoting ripening of the nanoparticles. Using high resolution transmission electron microscopy, it was observed that laser annealing caused nanoparticle enlargement with a concurrent improvement of their separation, while retaining their average spherical shape. Optical reflectance measurements showed that better LSPR was obtained when the AlN matrix was amorphous due to the restrained nanoparticle ripening inside nanocrystalline AlN. Roughening at the film/substrate interface and film degradation after laser annealing at the employed radiation wavelength where reduced compared to similar samples grown by pulsed laser deposition. Based on finite difference time domain simulations and X-ray reflectivity measurements, this was attributed to the improved quality of the AlN matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call