Abstract

Abstract The influence of carbon black loading on the dynamic properties of statically deformed elastomers has been investigated. The energy loss per cycle was found to increase according to the square of the strain amplification factor as expressed by the Guth-Gold-Einstein equation. The dynamic complex modulus |E*| is approximately equal to the static modulus obtained from the slope of the static stress-strain curve. The influence of carbon black loading on E* can, therefore, be predicted from its influence on the static stress-strain curve which was found to be governed by the first power of the strain amplification factor. The tangent of the loss angle can thus be predicted from |E*| and the energy loss per cycle. It does not only depend upon the dynamic viscosity of the material; it also depends upon the shape of the stress-strain curve as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.