Abstract

Spatial navigation is influenced by landmarks, which are prominent visual features in the environment. Although previous research has focused on finding advantages of landmarks on wayfinding via experimentation; however, less attention has been given to identifying the key attributes of landmarks that facilitate wayfinding, including the study of neural correlates (involving electroencephalogram, EEG analyses). In this paper, we combine behavioral measures, virtual environment, and EEG signal-processing to provide a holistic investigation about the influence of landmarks on performance during navigation in a maze-like environment. In an experiment, participants were randomly divided into two conditions, Landmark-enriched (LM+; N = 17) and Landmark-devoid (LM-; N = 18), and asked to navigate from an initial location to a goal location in a maze. In the LM+ condition, there were landmarks placed at certain locations, which participants could use for wayfinding in the maze. However, in the LM- condition, such landmarks were not present. Beyond behavioral analyses of data, analyses were carried out of the EEG data collected using a 64-channel device. Results revealed that participants took less time and committed fewer errors in navigating the maze in the LM+ condition compared to the LM- condition. EEG analyses of the data revealed that the left-hemispheric activation was more prominent in the LM+ condition compared to the LM- condition. The event-related desynchronization/synchronization (ERD/ERS) of the theta frequency band, revealed activation in the left posterior inferior and superior regions in the LM+ condition compared to the LM- condition, suggesting an occurrence of an object-location binding in the LM+ condition along with spatial transformation between representations. Moreover, directed transfer function method, which measures information flow between two regions, showed a higher number of active channels in the LM- condition compared to the LM+ condition, exhibiting additional wiring cost associated with the cognitive demands when no landmark was available. These findings reveal pivotal role of the left-hemispheric region (especially, parietal cortex), which indicates the integration of available sensory cues and current memory requirements to encode contextual information of landmarks. Overall, this research helps to understand the role of brain regions and processes that are utilized when people use landmarks in navigating maze-like environments.

Highlights

  • Instantaneous self-updating is crucial for navigating and wayfinding in an unfamiliar terrain, even with the assistance of sensors or maps (Waller and Hodgson, 2006)

  • These results show that participants had a lower number of repetitions and lesser average time spent during a map view in the LM+ condition compared to the LM− condition

  • For Left Posterior Superior (LPS) and Left Posterior Inferior (LPI) regions, higher brain activity was observed when landmarks were available on the route

Read more

Summary

Introduction

Instantaneous self-updating (i.e., egocentric-updating) is crucial for navigating and wayfinding in an unfamiliar terrain, even with the assistance of sensors or maps (Waller and Hodgson, 2006). Less is known about the behavioral and temporal processes that help quantify the influence of landmarks on wayfinding in novel environments. By using experimentation and electroencephalogram (EEG) analyses, we address this problem by investigating certain cognitive and temporal processes that help wayfinding in the presence of landmarks. Landmarks are visual entities that are perceived as physical objects in space (Epstein and Vass, 2014). These objects are stored in memory as a structure that is based on locations in space and they help in developing route knowledge (Epstein and Vass, 2014). Less attention has been given to the problem of understanding how landmarks influence performance in navigation tasks and what temporal mechanisms are implicated in the presence of landmarks

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.