Abstract

As satellite receiving signals are affected by complex radiative transfer processes in the atmosphere and on land surfaces, aerosol retrieval over land from space requires the ability to determine surface reflectance from the remote measurements. To use the Bremen Aerosol Retrieval (BAER) method for aerosol optical thickness (AOT) retrieval over land at a spatial scale of 1×1 km2 from Moderate Resolution Imaging Spectroradiometer (MODIS) data, a linear mixing model with a vegetation index was used to calculate surface reflectances. As the vegetation index is affected by the aerosol present in the atmosphere, an empirical linear relationship between short wavelength infrared (SWIR) channel reflectance and visible reflectance was estimated to calculate a modified aerosol free vegetation index (AFRI) value. Based on a modified AFRI obtained from MODIS SWIR channel reflectance, an improved linear mixing model was applied for aerosol retrieval. A comparison of results between calculated and apparent surface reflectance was satisfactory, with a linear fit slope above 0.94, correlation coefficients above 0.84, and standard deviation below 0.008 for the study area. These results can therefore be used for improved aerosol retrieval over land by the BAER method with MODIS Level 1 data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call