Abstract

To evaluate the relationships between coral calcification, thermal stress, and sedimentation and eutrophication linked to human impact (hereafter referred to as “land development”) by river discharge, we analyzed growth characteristics in the context of a paleoenvironment that was reconstructed from geochemical signals in modern and fossil (1.2 cal kyr BP and 3.5 cal kyr BP, respectively) massive Porites corals from Nagura Bay (“Nagura”) and from modern Porites corals from the estuary of the Todoroki River, Shiraho Reef (“Todoroki”). Both sites are on Ishigaki Island, Japan, and Nagura is located approximately 12 km west of Todoroki. At Nagura, the individual corals provide time windows of 13 (modern), 10 (1.2 cal kyr BP), and 38 yr in length (3.5 cal kyr BP). Here, we present the coral annual calcification for Nagura and Todoroki, and (bi) monthly resolved records of Sr/Ca (a proxy of sea surface temperature (SST)) and Ba/Ca (a proxy of sedimentation and nutrients related to land development) for Nagura. At Nagura, the winter SST was cooler by 2.8°C in the 1.2 cal kyr BP, and the annual and winter SSTs in the 3.5 cal kyr BP were cooler by 2.6°C and 4.6°C, respectively. The annual periodicity of Ba/Ca in modern coral is linked to river discharge and is associated with land development including sugar cane cultivation. Modern coral calcification also has declined with SST warming and increasing Ba/Ca peaks in winter. However, calcification of fossil corals does not appear to have been influenced by variations in Sr/Ca and Ba/Ca. Modern coral growth characteristics at Nagura and Todoroki indicate that coral growth is both spatially and temporally influenced by river discharge and land development. At Nagura, our findings suggest that land development induces negative thermal sensitivity for calcification in winter due to sugar cane harvest, which is a specifically modern phenomenon.

Highlights

  • Coral calcification is an important barometer of the physiological response of coral to changes in abiotic environmental factors, such as sea surface temperature (SST), sediment discharge, nutrients, and aragonite saturation state [1]

  • This study aimed to evaluate whether the relationships between coral calcification rate and thermal stress are modern characteristics using Holocene modern and fossil corals collected at the same site

  • Statistics In our statistical analyses, we investigated the influence of environmental factors (SST, global solar radiation, precipitation, degree heating months (DHM), and Ba/Ca ratio) and their long-term trends as they relate to coral growth and the periodicity of the geochemical signals for the coral collected in Nagura Bay

Read more

Summary

Introduction

Coral calcification is an important barometer of the physiological response of coral to changes in abiotic environmental factors, such as sea surface temperature (SST), sediment discharge, nutrients, and aragonite saturation state [1]. One of the most prominent negative impacts on coral calcification is coral bleaching, which occurs as a result of collapsing relationships between coral hosts and their resident photosynthetic dinoflagellates [2]. Prior to 1979, the Florida Keys and Mesoamerican Reef exhibited rare or even no bleaching events, even during high DHM periods [7,8,9]. These results imply that coral bleaching in response to thermal stress is a modern phenomenon, raising the question of the cause of recent coral bleaching events

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call