Abstract

Glued laminated timber is a structural engineered product that requires precision and strict quality control in its manufacture. For ensure that produced elements properties are in compliance with regulatory requirements, final product must be tested under laboratory conditions. Determining factors in final glulam pieces cost are the type and the quantity of adhesive used in structural elements manufacture. This study aimed to investigate, aided by three point static bending tests and variance analysis (ANOVA), influence of glue lines (3, 5, 7) and lamellae (4, 6, 8) on strength (MOR) and stiffness (MOE) properties of glulam beams manufactured with <i>Pinus</i><i>oocarpa</i> (CCA treated) and bonded with Phenol Resorcinol resin (Cascophen RS-216-M). These beams presented nominal dimensions 90mm wide; 100mm height; and 1350mm length. For 100 mm fixed height, three beams configurations were tested (a) with four lamellae of 25 mm (3 glue lines); with 6 lamellae of 16,7 mm (5 glue lines) and 8 lamellae of 12.5 mm each (7glue lines), being fabricated 6 beams for experimental condition. In addition to investigating influence of glue lines and lamellae number, possibility of estimating MOE and MOR based on apparent density was also evaluated. ANOVA results showed no significance about glue lines number (or lamellae thickness) in strength and stiffness values, implying, for economic reasons, be configuration with four 25mm lamellae the best among tested beams. From regressions, apparent density was only significant in MOE estimating (R<SUP>2</SUP> = 46.90%), indicating not be possible to estimate the stiffness and strength values of the glued laminated timber evaluated by the apparent density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call