Abstract

A series of M-type barium ferrites with chemicals composition BaFe12O19 and Ba0.7La0.3Fe(12-2x)(MnZn)xO19 (with x = 0.0, 0.2, 0.5) were synthesized using a chemical coprecipitation based technique. The sample was then called as BFO and BLF, BLFMZ-02 and BLFMZ-05, respectively. The structural parameters were measured by applying the full pattern fitting of Rietveld method using Fullprof program. The crystallite size was calculated using Scherrer formula and Williamson-Hall analysis method, and also confirmed by scanning electron microscope (SEM) and transmission electron microscope (TEM). The morphology of particle is composed of fine-grained aggregates with particle size distributions in the range of 70nm - 160nm. The lattice parameter (a = b and c), cell volume (Vcell) and density (ρ) of the samples were found to be changed with La, Mn and Zn substitution due to the dissimilar cationic radii of Ba2+ (1.49Å), La3+ (1.22Å), Fe3+ (0.64Å), Mn3+ (0.89Å) and Zn2+ (0.76Å) ions. The results of sample measurements with Vibrating Sample Magetometer (VSM) indicate that the magnetic behaviours showed that the saturation magnetization (Ms) increased gradually with the substitution of La3+, Mn3+ and Zn3+ ions, whereas the coercivity (Hc) was increase with addition of La3+ ions and then decrease significantly with the addition of Mn3+ and Zn2+ ions. The vector network analyzer (VNA) revealed that microwave absorption measured within 7 – 15 GHz frequency range indicated optimum reflection loss (RL) of-21.50dB at 10.5GHz for BLMZ-02 sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call