Abstract

The combined influence of rarefaction and compressibility on classical Kelvin-Helmholtz instability is investigated with numerical simulations employing the unified gas kinetic scheme. Five different regimes in the Reynolds-Mach-Knudsen number parameter space are identified. The flow features in various Mach and Knudsen number regimes are examined. Stabilizing action of compressibility leads to suppression of perturbation kinetic energy and vorticity and/or momentum thickness. The suppression due to rarefaction exhibits a different behavior. At high enough Knudsen numbers, even as the perturbation kinetic energy is suppressed, the vorticity and/or momentum thickness grows. The flow physics underlying the contrasting mechanisms of compressibility and rarefaction is highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.