Abstract

The general performance characteristics of a two-stage magnetic Brayton refrigeration cycle consisting of three constant magnetic fields and three irreversible adiabatic processes are investigated. Based on the thermodynamic properties of a magnetic material and the irreversible cycle model of a two-stage Brayton refrigerator, expressions for the cooling load and coefficient of performance of the refrigeration system are derived. The influence of the finite-rate heat transfer in the heat exchange processes, irreversibilities in the three adiabatic processes, ratios of two magnetic fields in the three constant magnetic field processes, and heat leak losses between two heat reservoirs on the performance of the two-stage magnetic Brayton refrigeration cycle are analyzed in detail. Some important performance curves, which can reveal the general characteristics of the refrigeration system, are presented and the maximum values of cooling load and coefficient of performance are numerically calculated. The optimal choices and matches of other parameters at the maximum cooling load or the maximum coefficient of performance are discussed and the optimally operating regions of some important parameters in the refrigeration system are determined. The results obtained here are compared with those derived from other models of the magnetic Brayton refrigeration cycles, and consequently, the advantage of an inter-cooled process is expounded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call