Abstract
Electron spin polarized electron paramagentic resonance (ESP EPR) spectra were obtained with deuterated iron-removed photosynthetic bacterial reaction centers (RCs) to specifically investigate the effect of the rate of primary charge separation, metal-site occupancy, and H-subunit content on the observed P865+QA- charge-separated state. Fe-removed and Zn-substituted RCs from Rb. sphaeroides R-26 were prepared by refined procedures, and specific electron transfer rates (kQ) from the intermediate acceptor H- to the primary acceptor QA of (200 ps)-1 vs (3-6 ns)-1 were observed. Correlation of the transient EPR and optical results shows that the observed slow kQ rate in Fe-removed RCs is H-subunit-independent, and, in some cases, independent of Fe-site occupancy as Zn2+ substitution does not ensure retention of the native kQ. In addition, shifts in the optical spectrum of P865 and differences in the high-field region of the Q-band ESP spectrum for Fe-removed RCs with slow kQ indicate possible structural changes near P865. The experimental X-band and Q-band spin-polarized EPR spectra for deuterated Fe-removed RCs where kQ is at least 15-fold slower at room temperature than the (200 ps)-1 rate observed for native Fe-containing RCs have different relative amplitudes and small g-value shifts compared to the spectra of Zn-RCs which have a kQ unchanged from native RCs. These differences reflect the trends in polarization predicted from the sequential electron transfer polarization (SETP) model [Morris et al. (1995) J. Phys. Chem. 99, 3854-3866; Tang et al. (1996) Chem. Phys. Lett. 253, 293-298]. Thus, SETP modeling of these highly resolved ESP spectra obtained with well-characterized proteins will provide definitive information about any light-induced structural changes of P865, H, and QA that occur upon formation of the P865+QA- charge-separated state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.