Abstract
The amalgamation of nanotechnology and biotechnology holds immense potential for developing innovative and essential products beneficial to mankind. Nanoparticles, particularly iron nanoparticles, exhibit the capacity to enhance plant growth and yield in various crops. Rather than employing nanomaterials alone, combining them with beneficial microorganisms can offer a more effective approach to promoting plant growth and yield. Piriformospora indica, a versatile endophytic fungus serves as a biofertilizer, bioregulator, stimulant, and biocontrol agent upon colonizing plant roots. The present study focuses on the synthesis and characterization of iron-modified multiwalled carbon nanotubes, mesoporous carbon, and alumina materials and their impact on the growth and yield of Zea mays L. in conjunction with Piriformospora indica under greenhouse conditions. The nanomaterials were prepared using the impregnation method and were characterized to confirm their nano size. Under greenhouse conditions, plants treated with nanomaterials and colonized by Piriformospora indica exhibited improvements in root length (≌2.5 times), shoot length (≌1.8 times), root biomass (≌3.5 times), shoot biomass (≌ 2.3 times), chlorophyll content (≌ 3 times), proline accumulation (≌ 2.5 times), and a reduction in lipid peroxidation compared to untreated Zea mays L. plants. This suggests that the combined application of nanomaterials and the multifaceted fungus can positively influence plant growth and yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.