Abstract

The electrical properties of carbon-based filler-embedded polymer nanocomposites are essential for various applications such as antistatic and electromagnetic interference (EMI) applications. In this study, the impact of additives (i.e., ethylene-co-acid-co-sodium acid copolymer-based ionomer and cyanuric acid) on the antistatic, mechanical, thermal, and rheological properties of extruded multiwalled carbon nanotube (MWCNT)/polyoxymethylene (POM) nanocomposites were systematically investigated. The effects of each additive and the combination of additives were examined. Despite a slight reduction in mechanical properties, the incorporation of ionomer (coating on CNTs) and/or cyanuric acid (π-π interaction between CNTs and cyanuric acid) into the POM/CNT nanocomposites improved the CNT dispersity in the POM matrix, thereby enhancing electrical properties such as the electrical conductivity (and surface resistance) and electrical conductivity monodispersity. The optimum composition for the highest electrical properties was determined to be POM/1.5 wt% CNT/3.0 wt% ionomer/0.5 wt% cyanuric acid. The nanocomposites with tunable electrical properties are sought after, especially for antistatic and EMI applications such as electronic device-fixing jigs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call