Abstract

The physico-chemical behavior of Cryptosporidium oocysts was investigated during their transfer through an alluvial formation from Les Cayes (Haiti) via batch tests. Five approximately 3kg soil samples were collected and combined prior to batch tests from the alluvial formations. The experiments were carried out at soil pH by equilibrating different ranges of pure oocysts concentrations and soil samples with 3mM CaCl2 and 1mM NaBr as electrolyte. We used the Debye–Hückel equation describing ion activity in a solution for a given ionic strength. The equilibrium adsorption mechanism is used to enumerate the oocysts in the soil. The results suggest that the oocysts behavior in porous media depends on soil characteristics such as soil pH, the nature of the mineral and organic constituents of the soil and the ionic strength and activities in solution. These results show that a total transfer in batch containing NaBr solutions against a partial one in batch containing CaCl2 solutions depends on the oocysts media concentration. To confirm the oocysts number retained in soil, confocal microscopy was successfully used and the images demonstrate that the majority of oocysts were retained at the range of concentrations tested. The findings from this study demonstrated that the retention of C. Parvum in soils may be influenced by chemical conditions and soils characteristics, which are important for groundwater risk assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.