Abstract

Holmium (Ho)-doped AlN thin films of thicknesses 60, 90 and 300 nm were grown in pure nitrogen atmosphere via RF magnetron sputtering. The deposited thin films were irradiated with protons at a dose of 5[Formula: see text]10[Formula: see text] ions/cm2 and the effects of irradiation on structural, magnetic and electrical characteristics of thin films were investigated. Rutherford backscattering spectroscopy (RBS) confirmed the presence of Al, N and Ho in prepared samples. X-ray diffraction analysis showed that crystallinity of the thin films was enhanced after irradiation and thicker films were more crystalline. Atomic force microscopy (AFM) revealed that the surface roughness and porosity of the thin films were increased after irradiation. Magnetic measurements showed that diamagnetic AlN:Ho thin films can be transformed into paramagnetic and ferromagnetic ones via suitable irradiation. The increase in carrier concentrations after irradiation was responsible for tuning the electrical and magnetic characteristics of thin films for applications in various high voltage microelectronic and magnetic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.