Abstract

ObjectivesTo evaluate the influence of intraoral scanning coverage (IOSC) on digital implant impression accuracy in various partially edentulous situations and predict the optimal IOSC. MethodsFive types of resin models were fabricated, each simulating single or multiple tooth loss scenarios with inserted implants and scan bodies. IOSC was subgrouped to cover two, four, six, eight, ten, and twelve teeth, as well as full arch. Each group underwent ten scans. A desktop scanner served as the reference. Accuracy was evaluated by measuring the Root mean square error (RMSE) values of scan bodies. A convolutional neural network (CNN) was trained to predict the optimal IOSC with different edentulous situations. Statistical analysis was performed using one-way ANOVA and Tukey's test. ResultsFor single-tooth-missing situations, in anterior sites, significantly better accuracy was observed in groups with IOSC ranging from four teeth to full arch (p < 0.05). In premolar sites, IOSC spanning four to six teeth were more accurate (p < 0.05), while in molar sites, groups with IOSC encompassing two to eight teeth exhibited better accuracy (p < 0.05). For multiple-teeth-missing situations, IOSC covering four, six, and eight teeth, as well as full arch showed better accuracy in anterior gaps (p < 0.05). In posterior gaps, IOSC of two, four, six or eight teeth were more accurate (p < 0.05). The CNN predicted distinct optimal IOSC for different edentulous scenarios. ConclusionsImplant impression accuracy can be significantly impacted by IOSC in different partially edentulous situations. The selection of IOSC should be customized to the specific dentition defect condition. Clinical significanceThe number of teeth scanned can significantly affect digital implant impression accuracy. For missing single or four anterior teeth, scan at least four or six neighboring teeth is acceptable. In lateral cases, two neighboring teeth may suffice, but extending over ten teeth, including contralateral side, might deteriorate the scan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.