Abstract

Effects of intralaryngeal CO2 on the response of superior laryngeal afferents to negative pressure were investigated in 20 anesthetized spontaneously breathing adult cats. Single-fiber action potentials were recorded from the peripheral cut end of the superior laryngeal nerve. The larynx was exposed to negative pressure during inspiration when the animal breathed against an occluded upper airway. Among the 99 receptors evaluated, 54 were respiratory modulated and 45 were nonmodulated endings. The effect of intralaryngeal CO2 on the response of 39 receptors responding to negative pressure was determined by exposure of the larynx to CO2 or air for 1 min followed immediately by upper airway occlusion. The mean discharge frequency of 22 fibers inhibited by negative pressure was 32.4 +/- 2.6 Hz during air trials compared with 29.9 +/- 2.6 Hz during CO2 trials (P < 0.005). During occlusion of the upper airway after the warm humidified air trial, the discharge frequency of these endings decreased to 24.2 +/- 2.3 Hz compared with 17.5 +/- 2.2 Hz after CO2 trial (P < 0.001). The mean discharge frequencies of 17 fibers stimulated by negative pressure were 3.7 +/- 2.6 and 4.4 +/- 1.8 Hz, respectively, during air and CO2 trials. The mean frequencies increased to 14.7 +/- 3.5 Hz (air) and 18.6 +/- 4.0 Hz (CO2) during upper airway occlusions (P < 0.01). We conclude that intralaryngeal CO2 can alter the response of pressure-sensitive laryngeal afferents, thereby having a role in the maintenance of upper airway patency.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call