Abstract

Collaboration is a critical skill in everyday life. It has been suggested that collaborative performance may be influenced by social factors such as interpersonal distance, which is defined as the perceived psychological distance between individuals. Previous literature has reported that close interpersonal distance may promote the level of self-other integration between interacting members, and in turn, enhance collaborative performance. These studies mainly focused on interdependent collaboration, which requires high levels of shared representations and self-other integration. However, little is known about the effect of interpersonal distance on independent collaboration (e.g., the joint Simon task), in which individuals perform the task independently while the final outcome is determined by the parties. To address this issue, we simultaneously measured the frontal activations of ninety-four pairs of participants using a functional near-infrared spectroscopy (fNIRS)-based hyperscanning technique while they performed a joint Simon task. Behavioral results showed that the Joint Simon Effect (JSE), defined as the RT difference between incongruent and congruent conditions indicating the level of self-other integration between collaborators, was larger in the friend group than in the stranger group. Consistently, the inter-brain neural synchronization (INS) across the dorsolateral and medial parts of the prefrontal cortex was also stronger in the friend group. In addition, INS in the left dorsolateral prefrontal cortex negatively predicted JSE only in the friend group. These results suggest that close interpersonal distance may enhance the shared mental representation among collaborators, which in turn influences their collaborative performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call