Abstract
We investigate the motion of test bodies with internal structure in general relativity. We utilize a multipolar approximation scheme along the lines of Mathisson-Papapetrou-Dixon including the quadrupolar order. The motion of pole-dipole and quadrupole test bodies is studied in the context of the Kerr geometry. For an explicit quadrupole model, which includes spin and tidal interactions, the motion in the equatorial plane is characterized by an effective potential and by the binding energy. We compare our findings to recent results for the conservative part of the self-force of bodies in extreme mass ratio situations. Possible implications for gravitational wave physics are outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.