Abstract

The effects of internal waves on the propagation of acoustic pulses in the lower atmosphere were studied theoretically and by acoustic pulse sounding of the stable atmospheric boundary layer. Due to a control in the experiments of the stratification and time variations of meteorological parameters, such as wind speed, temperature and atmospheric pressure, we were able to observe the influence of the variations of these parameters on a pulse wave form, travel time and time duration. For the travel time and wind speed variations we obtained statistical characteristics (variances, frequency spectra and coherences) in the range of periods from 1 min to 1 h and found several dominant periods, which are inherent to the trapped internal waves in the lower atmosphere. Using a nonlinear model of internal wave spectrum in the atmosphere described here we have made the calculations of variances, frequency spectra and structure functions of travel time fluctuations, which allowed us to interpret some of the observed data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call