Abstract

The effect of entanglements on the glass transition and structural relaxation behaviors has been studied for polystyrene (PS) and phenolphthalein poly(ether sulfone) (PES-C) samples by fast evaporation of the solution of concentrations varying from above the overlapping concentration to far below it, and compared to the results we have studied previously in PC. It has been found that for all the polymers we have studied, in the concentrated solution region, the T-g of the samples obtained from solution are independent of the change of concentration and are very close to that of normal bulk samples, whereas in the dilute solution region the T-g of the samples decrease with the logarithm of decreasing concentration. The critical concentrations that divide the two distinct regions for the three polymers are 0.9% g/mL for PC, 0.1% g/mL for PS, and 1% g/mL for PES-C. The decrease of T-g of the samples is interpreted by the decrease of intermolecular entanglements as the isolation of polymer chains, and the entanglement of polymer chains restrained the mobility of the segments. The structural relaxation behavior of the polymers is also found to be different from that of normal bulk samples. The enthalpies of single-chain samples are lower than that of the bulk ones, which correspond to the lower glass transition temperature; the peaks are lower and broader, and the relaxed enthalpy is much lower as compared to that of bulk samples. In the three polymers we have studied, the influence of change of entanglements on both the decrease in glass transition temperature and relaxed enthalpy is the most significant for PS and the least for PES-C. It is indicated that the interactions in the flexible polymers are weak; thus, the restraint of the entanglements on the mobility of the segments plays a more important role in the flexible polymers, and the change of entanglement in the flexible polymers has a more significant influence on the physical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.