Abstract

The purpose of this study was to investigate the influence of size of specimens on tensile strength. Pure Sn, Sn-Ag-Cu, Sn-Cu and Sn-Ag solder alloys were used in this study in order to investigate the effect of intermetallic compound, such as Ag <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn and Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sub> Sn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sub> , on tensile strength. Three types of specimens, aspect ratio of 2:5, 6:15, 8:20, were used. The tensile test was performed at a strain rate of 2.5×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-4</sup> s <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> at room temperature. Microstructure of solders was observed by OM and SEM. Pure Sn and Sn-Cu showed the size effect on the tensile strength. Moreover, tensile strength decreased as specimen size is small because small test piece have more grain boundaries. On the other hand, Sn-Ag-Cu and Sn-Ag did not show the size effect. From these results, it can be suggested that intermetallic compounds suppress the size effect on tensile strength and Ag <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn has a strong effect on tensile strength comparing with Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sub> Sn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sub> . This means that the obstruction of slip deformation by Ag <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn can enhance the mechanical property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.